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Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism
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An adaptive adjustment mechanism is applied to stabilize multidimensional dynamical systems. Without
utilizing any prior knowledge of the system itself, nor extra external control signals, the mechanism can ensure
a large class of chaotic systems to converge to their ‘‘generic’’ stable periodic orbits.
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MOTIVATIONS

Much attention has been focused on stabilizing cha
dynamical systems in recent years@1,2#, and various algo-
rithms have been designed to achieve such goal. Most a
rithms, however, either requirea priori knowledge about the
system, or force the system to converge to the periodic or
that are biased from the original system. One exception is
adaptive adjustment mechanism~AAM !, which utilizes nei-
ther prior knowledge of the system itself nor extra exter
control signals, and forces all one-dimensional discrete s
tems to converge to their original periodic orbits. This Rap
Communication applies the same principle to the much m
complicated multidimensional dynamical systems, and
plores the pros and cons.

Consider ann-dimensional nonlinear discrete system d
fined by

X~ t11!5F„X~ t !…, ~1!

whereX5(x1 ,x2 , . . . ,xn), andF5( f 1 , f 2 , . . . ,f n), with f i
being well defined functions on a domainD.

By adaptive adjustment mechanism, we mean the follow-
ing modified system:

X~ t11!5F̃„X~ t !…ª~12g!F„X~ t !…1gX~ t !, ~2!

whereg is positive controlling parameter, and is referred
as adaptive parameterhereafter. The practical implementa
tion is illustrated in Fig. 1. Expressing Eq.~2! as X(t11)
5F„X(t)…1gX(t)2F„X(t)…, we see that AAM forces a
feedback adjustment whenever any variable strays a
from its previous state. It is easy to verify that the syst
with AAM processes the following properties:

Corollary 1:The systems F and F˜ share exactly the same s
of fixed points.~Proof omitted.!

Corollary 1 implies the fixed points of AAM are ‘‘ge
neric’’ in the sense that they are inherited directly from t
original system. DenoteDF(X̄) as the Jacobian matrix of th
original systemF evaluated atX̄ with $l1 ,l2 , . . .ln% as the
n roots of the characteristic equation, i.e.,
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ulI2DF~X̄!u5)
j 51

n

~l2l j !50, ~3!

where I is a unit matrix. And letDF̃(X̄) be the Jacobian
matrix of the systemF̃ evaluated atX̄ and $l̃1 ,l̃2 , . . . l̃n%
be the related eigenvalues, so that

ulI2DF̃~X̄!u5)
j 51

n

~l2l̃ j !50. ~4!

Then we have

Corollary 2:For each and every fixed point of F and F˜ , there
exists the following one-to-one correspondence betw
their eigenvalues:

l̃ j5~12g!l j1g, j 51,2, . . . ,n. ~5!

Proof:
It follows from Eq. ~2! that

DF̃5~12g!DF1gI . ~6!

The characteristic equation under the mapF̃ is given by

ul̃I2DF̃~X̄!u5u~ l̃2g!I2~12g!DFu

5~12g!nul̂I2DF~X̄!u

5~12g!n)
j 51

n

~ l̂2l j !,

where l̂ª
l̃2g

12g
, ~7!

FIG. 1. Adaptive adjustment mechanism.
R1012 ©2000 The American Physical Society
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FIG. 2. Effects ofg.
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so thatl̂5l j would imply identity ~5!. Q.E.D.
A fixed point of F̃ is stable if and only ifmaxul j u,1.

Corollary 1 and 2 together enable us to adjust the eigen
ues by suitable choice of an adaptive parameterg only.

To grasp a general picture of the effect of introduci
AAM, we consider the situation in which an eigenvalue
complex. Now supposing thatl1 andl2 are a pair of com-
plex conjugates such that

l1,25a6bi, ~8!

and the modulus is given byul1,2u5Aa21b2.
The eigenvalues corresponding to theF̃ are given by

l̃1,25~12g!~a6bi!1g5@~12g!a1g#6~12g!bi, ~9!

with the modulus

ul̃1,2u5AH~g!5A„~12g!a1g…21~12g!2b2,
~10!

where H~g!5̂„~12g!a1g…21~12g!2b2.

Let ḡ be the critical adaptive parameter such thatH(ḡ)
51. Solving from Eq.~10!, we have

ḡ511
2~a21!

~a21!21b2
, ~11!

with H8~ ḡ !52~a21!. ~12!

Therefore,ḡ"1 andH8(ḡ)"0 if and only if a"1.
For the special casesg50 ~without AAM! andg51 ~no

effect of the original map!, there exist the following identi-
ties and inequalities:

H~0!5a21b2.0, ~13!

H8~0!52„a2H~0!…, ~14!

H~1!51, ~15!

H8~1!52~12a!"0 if a"0. ~16!

Also note that
l-

H9~g!52„~12a!21b2
….0. ~17!

These relationships enable us to explore howH(g) is
changed withg in terms of the nature ofH j (0):

Case A. H(0).1 ~and henceul1,2u.1):
If a,1, we haveH8(0),0 andH8(1).0. The identity

H(1)51 implies that there always exists aḡ such that
H(g),1 for all gP(ḡ,1). However, wheng.1, H(g) will
resume to exceed unity.

If a.1, both H8(0),0 and H8(1),0 hold true. The
convex property ofH reveals thatH is decreasing along the
increase ofg from 0 to 1 ~but never to the extent that it i
less than unity!. Therefore, there always exists aḡ such that
H(g),1 for all gP(1,ḡ). But wheng.ḡ, H(g) starts to
exceed unity again.

If a51, althoughH8(g),0 holds for g,1, H(g) is
always greater than unity.

The above analysis is illustrated in Fig. 2~a!, whereH(g)
is plotted againstg with the assumption ofH(0)[4. We
see,no matter what a is, introducing AAM withg,1 always
helps in reducing the magnitude of the modulus. It also ob-
served that the modulus of an imaginary eigenvaluea
50,b.1) can only be reduced by ag that is less than unity.

Case B. H(0),1 ~and henceul1,2u,1): This case exists
only whena,1. SinceH8(0)52„a2H(0)…, introducing a
g that is less than unity may decrease or increase the ei
value at the beginning, but finally increase again un
H(1)51. Hence, whengP(0,1), H(g) will never exceed
unity so that the stability of the periodic orbit is preserve
To the contrary, wheng.1, H(g) will become greater than
unity so as to destabilize a stable periodic orbit. Case B
illustrated in Fig. 2~b!, whereH(0)[0.6 is set.

When the original eigenvalue is real (l j5a), which is
always true for a one-dimensional system (n51), Eq.~11! is
simplified to

ḡ5
~l j11!

l j21
. ~18!

A more detailed illustration for the relationship betweenl

andl̃ with respect tog for real eigenvalues is demonstrate
in Fig. 2~c!.
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The following conclusion follows from the above anal
sis:

Theorem 3:For an n-dimensional dynamical system d

fined in Eq. (1), supposing that X¯ is a fixed point of F and aj
is the real part of the eigenvaluel j , for j51,2, . . . ,n,then

Case I. if aj,1 for all j 51,2, . . . ,n, there exists aḡ
such that, for allgP(ḡ,1), all respective modulus unde
AAM can be reduced to a magnitude that is less than un
and hence, the original unstable fixed point will be sta
lized;

Case II. if aj.1 for all j 51,2, . . . ,n, there exists aḡ
such that, for allgP(1,ḡ), all respective modulus unde
AAM can be reduced to a magnitude that is less than un
and hence, the original unstable fixed point is stabilized;

Case III.if someaj ’s are greater than unity, but others a
less than unity, then the unstable fixed point cannot be
bilized by simple AAM defined by Eq.~2!.

For a one-dimensional dynamical system, case III d
not occur, therefore, all unstable periodic points can be
bilized by AAM. Geometrically, adopting an adaptive p
rameterg that is less than unity can stabilize all fixed poin
with down-sloping branches (l,0), while fixed points with
upper-sloping branches (l.1) can be stabilized by an adap
tive parameterg that is greater than unity@3#. Actually,
whenn51, Eq. ~2! reduces to

f̃ „x~ t !…5~12g! f „x~ t !…1gx~ t !, ~19!

and hence

f̃ 8~x!5~12g! f 8~x!1g, ~20!

f̃ 9~x!5~12g! f 9~x!. ~21!

Therefore, ifg,1, f̃ 9(x) preserves the sign off 9(x), and
from the discussion above, in most cases,f̃ 8 has the same
sign of f 8(x). The net effect of introducingg is to
‘‘squeeze’’ the original system toward its diagonal axis
the phase diagram.

However, if g.1, in most cases,f̃ 8 possesses the oppo
site sign off 8(x), while f̃ 9(x) is always opposite tof 9(x).
The net effect of introducingg is to reflect the original sys
tem against the diagonal line in the phase diagram.

The implementation of AAM in one-dimensional discre
dynamics~19! enjoys a special property wheng,1, pre-
serving the domain (fluctuation range) of the original pr
cess f. Obviously, if the domain of a chaotic processf is
given by I 5(xmin ,xmax), with xmin,xmax, which are
achieved byf at xl andxh, respectively, i.e.,xmin5 f (xl) and
xmax5 f (xh), with xmin<xl,xh<xmax, then

f̃ ~xl !5~12g! f ~xl !1gxl

5~12g!xmin1gxl>~12g!xmin1xmin5xmin ,

f̃ ~xh!5~12g! f ~xh!1gxh

5~12g!xmax1gxh<~12g!xmax1xmax5xmax,
y,
-

y,

a-

s
a-

that is, f̃ mapsI into I itself.
But this property does not hold wheng.1 and whenn

.1. Figure 3 provides an illustration with the cubic ma
defined byxt115̂xt(4xt23)2, from which we see that the
fixed point x̄25 1

2 is stabilized withg5 1
2 , while the fixed

point at two endsx150 and x351 are stabilized byg
P@1,gmax#, wheregmax5@u8(0)11/u8(0)21#5 5

4 . However,
no matter what valueg may take, the AAM always preserve
the positions of these fixed points.

NUMERICAL SIMULATIONS

Consider the Hennon mapX(t11)5u„X(t)… defined by

x~ t11!5
7

5
1

3

10
y~ t !2x2~ t !

y~ t11!5x~ t !. ~22!

This is a famous chaotic system with a strange attrac
There are two fixed points:X̄1'(0.8839,0.8839) with eigen
values $l1

(1) ,l2
(1)%5$0.156,21.924%, and X̄2'(21.5839,

21.5839) with eigenvalues$l1
(2) ,l2

(2)%5$3.26,20.92%, re-

spectively. Apparently,X̄1 can be stabilized through uni
formly adaptive adjustment since both eigenvalues are
than unity. Since

ḡ1
(1)5

l1
(1)11

l1
(1)21

521.3697 andḡ2
(1)5

l2
(1)11

l2
(1)21

50.31601,

so it would be expected that the adjusted system

x~ t11!5~12g!F7

5
1

3

10
y~ t !2x2~ t !G1gx~ t !

y~ t11!5~12g!x~ t !1gy~ t !%, ~23!

will converge to the fixed pointX̄1'(0.8839,0.8839) when
gP(0.31601,1).

Figure 4~a! shows the bifurcation diagram ofx(t) against
the adaptive parameterg after discarding first 300 iterations
Along with the increasing ofg the dynamics changes from
pure chaos to multiple periodic points, and finally conve
gence to the stable fixed pointX̄1 wheng.0.3.

To have a better idea of the effectiveness of AAM, tw
numerical simulations are overlapped in Fig. 4~b! for the

FIG. 3. Example of the cubic map.
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FIG. 4. Simulations for the Hennon map.
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cases ofg50.2 andg50.4, under which the system rapid
converges to a periodic-2 orbits and the fixed pointX̄1, re-
spectively. But it should be emphasized that, while the fix
point converged to, underg50.4 is ‘‘generic,’’ the
periodic-2 orbits converged to underg50.2, however, is not
inherited from the Hennon map.

To force an unstable nonlinear systemF to converge to a
generic period-m orbit, we simply need to generalize AAM
to the following form:

X~ t11!5~12g!Fm
„X~ t !…1gX~ t !, ~24!

where

denotes themth recurrent map ofF.
For the Hennon map discussed, solving from the iden

u2(X)5X, a pair periodic-2 points with identical set of e
genvalues $23.0101,20.2989% are obtained: X1

(2)

5(1.3661,20.6661) and X2
(2)5(20.6661,1.3661). Since

both eigenvalues are less than unity, they are easily st
lized by AAM mechanism:

X~ t12!5~12g!u2
„X~ t !…1gX~ t !,

with 0,g,1. Computer simulation withg50.6 is shown in
Fig. 4~c!, where the system rapidly converges to ‘‘generi
periodic-2 points after a few iterations.
-

d

y

bi-

CONCLUDING REMARKS

In the implementation of AAM, only one controlling pa
rameterg is utilized, which depends on neither the structu
of the original system nor any system parameters. A cha
dynamical system could always be stabilized through gra
ally increasingg value from zero onward, should no speci
requirement on any particular orbit be required.

For multidimensional systems, a more general adap
adjustment mechanism can be designed so that every
vidual variable is controlled by its own adaptive paramet
that is, Eq.~2! is generalized to

X~ t11!5„I2G)F„X~ t !…1GX~ t !, ~25!

where G5diag$g1 ,g2 , . . . ,gn% is a diagonal matrix. Intu-
itively, such generalization should be able to overcome
limitation of case III in Theorem 3 so as to stabilize a
chaotic system to any desired periodic orbit by suita
choosing theG matrix, shoulda priori information about the
structure and dynamics of the system be known in advan
While such expectation is true for a broad class of dynam
systems, there do exist some types of multidimensional s
tems that can never be stabilized through generalized A
defined by Eq.~25!. Detailed analysis will be followed in a
forthcoming publication.
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