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Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism
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An adaptive adjustment mechanism is applied to stabilize multidimensional dynamical systems. Without
utilizing any prior knowledge of the system itself, nor extra external control signals, the mechanism can ensure
a large class of chaotic systems to converge to their “generic” stable periodic orbits.

PACS numbd(s): 05.45-a

MOTIVATIONS n

Much attention has been focused on stabilizing chaotic |M_DF(X)|:JH1 (A=Xj)=0, ©)
dynamical systems in recent yedfis2], and various algo-
rithms have been designed to achieve such goal. Most alg‘\)/\'/herel is a unit matrix. And IetDIE(Y) be the Jacobian
rithms, however, either requiie priori knowledge about the
system, or force the system to converge to the periodic orbit
that are biased from the original system. One exception is th
adaptive adjustment mechanig®AM ), which utilizes nei- n
ther prior knowledge of the system itself nor extra external IN— D",f(y” _ H (A—=X;)=0. (4)
control signals, and forces all one-dimensional discrete sys- j=1 !
tems to converge to their original periodic orbits. This Rapid
Communication applies the same principle to the much mord hen we have
complicated multidimensional dynamical systems, and ex-

atrix of the systent evaluated aX and{X;,X,, ... Xn}
e the related eigenvalues, so that

plores the pros and cons. Corollary 2:For each and every fixed point of F and there
Consider am-dimensional nonlinear discrete system de-€xists the following one-to-one correspondence between
fined by their eigenvalues:
X(t+1)=F(X(1), 1) Nj=(1—y\+y, j=12,...n (5)
whereX= (%, . . . X), andF=(fy,f,, ... f,), with f; ~ Prook

being well defined functions on a domain It follows from Eq. (2) that

By adaptive adjustment mechaniswe mean the follow-

ing modified system: DF=(1—-y)DF+yl. (6)

~ The characteristic equation under the nkajs given by
X(t+1)=FX(1):=(1-p)FX®)+¥yX(1), (2

[XI=DF(X)|=|(X=»)1-(1-)DF|
wherey is positive controlling parameter, and is referred to

as adaptive parametehereafter. The practical implementa- =(1- )"\l =DF(X)|
tion is illustrated in Fig. 1. Expressing E) as X(t+1) n

=F(X(t))+ yX(t)—F(X(t)), we see that AAM forces a :(1_7)nH (A=)
feedback adjustment whenever any variable strays away j=1 I

from its previous state. It is easy to verify that the system
with AAM processes the following properties: -y

where )\:ZlTy' (7)
Corollary 1:The systems F and Share exactly the same set
of fixed points(Proof omitted)

Corollary 1 implies the fixed points of AAM are “ge- x@® — : (1= MFX (@)
H " 1 H H 1 F I 1 - ,'p
neric” in the sense that they are inherited directly from the ' V 2 X(t+1)
original system. DenotF(X)_as the Jacobian matrix of the o;{g'i;;rs}_s?;é; FX(®) X0
original systent evaluated aX with {\{,\5, ...\, } as the
n roots of the characteristic equation, i.e., X(t) y
Stabilized System:X (¢t + 1) = (1 — Y)F(X(t)) + vX (t)
*Electronic address: awhhuang@ntu.edu.sg FIG. 1. Adaptive adjustment mechanism.
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FIG. 2. Effects ofy.

so thath =\; would imply identity (5). Q.E.D. H"(y)=2((1—a)?+b?)>0. (17

A fixed point of F is stable if and only ifmax;|<1.
Corollary 1 and 2 together enable us to adjust the eigenval- These relationships enable us to explore hiey) is
ues by suitable choice of an adaptive parametenly. changed withy in terms of the nature aff;(0):

To grasp a general picture of the effect of introducing Case A. H0)>1 (and hencg\y >1):
AAM, we consider the situation in which an eigenvalue is If a<1, we haveH’(0)<<0 andH’(1)>0. The identity
complex. Now supposing that; and\, are a pair of com- H(1)=1 implies that there always exists @ such that

plex conjugates such that H(y)<1 for all ye (y,1). However, wheny>1, H(y) will
resume to exceed unity.

If a>1, bothH’(0)<0 andH'(1)<0 hold true. The
convex property oH reveals thatH is decreasing along the
increase ofy from 0 to 1 (but never to the extent that it is

less than unity Therefore, there always existsyasuch that

)\1’2: at b|,

and the modulus is given by, J = \aZ+b2.
The eigenvalues corresponding to fhere given by

8

7\1,2:(1—y)(aibi)+y=[(1—y)a+ v]=(1—=9y)bi, (90 H(y)<1 for all ye(1,y). But wheny>1vy, H(y) starts to
. exceed unity again.
with the modulus If a=1, althoughH’(y)<0 holds for y<1, H(y) is
~ B 5 = always greater than unity.
N1d=VH(») =V(1-ya+ y)’+(1-y)b? The above analysis is illustrated in Figa2 whereH ()
(100 s plotted againsty with the assumption of(0)=4. We

where H(y)=((1—y)a+y)?+(1—y)%b2.

Let y be the critical adaptive parameter such thity)
=1. Solving from Eq.(10), we have

2(a—1)

see,no matter what a is, introducing AAM with<<1 always
helps in reducing the magnitude of the modulisalso ob-
served that the modulus of an imaginary eigenvalae
=0,b>1) can only be reduced bynthat is less than unity.
Case B. H0)<1 (and hencg\j j<1): This case exists
only whena<1. SinceH'(0)=2(a—H(0)), introducing a

(

y=1+ (a—1)2+b?’ (19 v that is less than unity may decrease or increase the eigen-
value at the beginning, but finally increase again until
with H’(?)zZ(a—l). (12) H(1)=1. Hence, whenye (0,1), H(y) will never exceed

unity so that the stability of the periodic orbit is preserved.

Therefore,y=1 andH'(y)s0 if and only ifas 1.

For the special caseg=0 (without AAM) andy=1 (no
effect of the original map there exist the following identi-
ties and inequalities:

H(0)=a%+b?>0, (13
H'(0)=2(a—H(0)), (14)
H(1)=1, (19
H'(1)=2(1—-a)s0 if aso. (16)

Also note that

To the contrary, when>1, H(y) will become greater than

unity so as to destabilize a stable periodic orbit. Case B is

illustrated in Fig. 2b), whereH(0)=0.6 is set.

When the original eigenvalue is reak;=a), which is
always true for a one-dimensional system~1), Eq.(11) is
simplified to

— (\HD)

N1

(18

A more detailed illustration for the relationship between

andX\ with respect toy for real eigenvalues is demonstrated

in Fig. 2(c).
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The following conclusion follows from the above analy- 0@)y  zerr = (1 - 7)ze(dm = 3)" + 722
sis: 14 -
Theorem 3:For an n-dimensional dynamical system de-
fined in Eq. (1), supposing that i a fixed point of F and @
is the real part of the eigenvalue;, for j=1,2,...,n,then
Case l.if a;<1 for all j=1,2,...n, there exists ay 0.5

such that, for allye(zl), all respective modulus under
AAM can be reduced to a magnitude that is less than unity,

and hence, the original unstable fixed point will be stabi- 7>1
lized;
Case Il.if a;>1 for all j=1,2,...n, there exists ay 06 05 1°

such that, for allye(1,y), all respective modulus under

AAM can be reduced to a magnitude that is less than unity,

and hence, the original unstable fixed point is stabilized,; that is.F maps! into | itself
Case IIl.if somea;’s are greater than unity, but others are B ' hi P d : hold wh 1 and wh

less than unity, then the unstable fixed point cannot be sta- ut this property does not hold whep>1 and whem

bilized by simple AAM defined by Eq(2). >1. Figure 3 provides an illustration with the cubic map

For a one-dimensional dynamical system, case Il doe§lefined byx, ;=x,(4x,—3)? from which we see that the
not occur, therefore, all unstable periodic points can be stafixed point xz—% is stabilized withy=3%, while the fixed
bilized by AAM. Geometrically, adopting an adaptive pa- point at two endsx;=0 and xz=1 are stabilized byy
rametery that is less than unity can stabilize all fixed points €[ 1,ymaxl, Whereyma=[6'(0)+1/6'(0)—1]= 3. However,
with down-sloping branches\(«0), while fixed points with  no matter what valug may take, the AAM always preserves
upper-sloping branchea 1) can be stabilized by an adap- the positions of these fixed points.
tive parametery that is greater than unity3]. Actually,

whenn=1, Eq.(2) reduces to NUMERICAL SIMULATIONS
Consider the Hennon may(t+ 1)= 6(X(t)) defined by

FIG. 3. Example of the cubic map.

Tx(t)=(1=PfxO)+yx(), (19
7 3
and hence x(t+1)= st Ey(t) —x2(t)
T =(1-9T0+y, (20) y(r+1)=x(v. 22
_ This is a famous chaotic system with a strange attractor.
F(x)=(1=7f"(x). 1) There are two fixed pomté(l (0.8839,0. 8839) with eigen-

. - _ , values NV AP} ={0.156,-1.924, and X,~(— 15839
Therefore, ify<1, f"(x) preserves the sign df'(x), and _ 4 5839) with e|genvalue$)\(2) NP1 =13.26-0.92, r

from the discussion above, in most caséshas the same
sign of f'(x). The net effect of introducingy is to
“squeeze” the original system toward its diagonal axis in
the phase diagram.

spectively. Apparently)?1 can be stabilized through uni-
formly adaptive adjustment since both eigenvalues are less
than unity. Since

However, if y>1, in inost cased’ possesses the oppo- — AP+1 — AP +1
site sign off’(x), while f”(x) is always opposite td”(x). LN 1.3697 andy;'= N =0.31601,
The net effect of introducing is to reflect the original sys- ! 2
tem against the diagonal line in the phase diagram. so it would be expected that the adjusted system

The implementation of AAM in one-dimensional discrete

dynamics(19) enjoys a special property whep<1, pre- 7 3 )

serving the domain (fluctuation range) of the original pro- X(t+1)=(1=y)|g+ 7gY(O =XV |+ x(1)

cess f Obviously, if the domain of a chaotic procekss

given by 1=Xmin:Xmax), With Xmin<Xmax, Which are y(t+1)=(1=y)x()+yy(1)], (23)
achieved byf atx' andx", respectively, i.e Xmin=f(x') and _ _ o

Xoma= F XM, With X,in< X' <X"< X100, then will converge to the fixed poinK;~(0.8839,0.8839) when

ve(0.31601,1).
Figure 4a) shows the bifurcation diagram &{t) against

Fovl) — _ | |
FO)= (1= 9 F00) +¥x the adaptive parameterafter discarding first 300 iterations.

= (1= Y)Xmint ¥X'= (1= Y)Xmin+ Xmin= Xmin Along with the increasing ofy the dynamics changes from
pure chaos to multiple periodic points, and finally conver-
FoM = (1= ) F(xN) + yx" gence to the stable fixed poiX wheny>0.3.

To have a better idea of the effectiveness of AAM, two
=(1= V) Xmaxt YX"< (1= Y)Xmaxt Xmax= Xmax: numerical simulations are overlapped in Figb@for the
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FIG. 4. Simulations for the Hennon map.
cases ofy=0.2 andy= 0.4, under which the system rapidly CONCLUDING REMARKS
converges to a periodic-2 orbits and the fixed point re- In the implementation of AAM, only one controlling pa-

spectively. But it should be emphasized that, while the fixedrametery is utilized, which depends on neither the structure

point converged to, undery=0.4 is ‘“generic,” the of the original system nor any system parameters. A chaotic

periodic-2 orbits converged to undgrk=0.2, however, is not dynamical system could always be stabilized through gradu-

inherited from the Hennon map. ally increasingy value from zero onward, should no special
To force an unstable nonlinear systéhio converge to a requirement on any particular orbit be required.

generic periodn orbit, we simply need to generalize AAM For multidimensional systems, a more general adaptive

to the following form: adjustment mechanism can be designed so that every indi-
vidual variable is controlled by its own adaptive parameter,
X(t+1)=(1—y)FM(X(t))+ vX(1), (24)  thatis, EQ.(2) is generalized to
where X(t+1)=(1-T)FX(t)+TX(1), (25)
m 2l
F “‘M whereI'=diag y1, v, . .. ,ya} is @ diagonal matrix. Intu-
mtimes itively, such generalization should be able to overcome the
limitation of case Il in Theorem 3 so as to stabilize any
denotes thenth recurrent map oF. chaotic system to any desired periodic orbit by suitably

, For the Hennon map discussed, solving from the identityonoosing the™ matrix, shoulda priori information about the
0"(X)=X, a pair periodic-2 points with identical set of €i- strycture and dynamics of the system be known in advance.
genvalues {—3.0101;-0.2989 are obtained: X  \while such expectation is true for a broad class of dynamical
=(1.3661-0.6661) andX{”=(—0.6661,1.3661). Since systems, there do exist some types of multidimensional sys-
both eigenvalues are less than unity, they are easily stabjems that can never be stabilized through generalized AAM
lized by AAM mechanism: defined by Eq{(25). Detailed analysis will be followed in a

forth i lication.
X(t+2) = (1= ) X (D)~ yX(1), orthcoming publication
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